본문 바로가기
반응형

데이터 벌집44

[Deep Learning ]Sparse Categorical Crossentropy: 효율적인 멀티클래스 분류를 위한 손실 함수 멀티클래스 분류 문제에서 모델의 성능을 최적화하는 것은 머신러닝과 딥러닝에서 중요한 과제 중 하나입니다. 🚀 이러한 문제에서 정확한 예측을 위해 범주형 크로스 엔트로피(Categorical Crossentropy)가 널리 사용되지만, 클래스의 수가 많을 경우 메모리 사용량과 계산 복잡도가 증가하는 문제에 직면하게 됩니다. 이에 대한 해결책으로 'Sparse Categorical Crossentropy'가 등장했습니다. Sparse Categorical Crossentropy의 정의 📚 Sparse Categorical Crossentropy는 멀티클래스 분류 문제에서 사용되는 손실 함수로, 정수 형태의 레이블을 직접 사용하여 모델의 손실을 계산합니다. 이 방식은 각 클래스를 원-핫 인코딩으로 변환하는 과.. 2024. 2. 16.
[Deep Learning] 딥러닝에서의 핵심 요소, 활성화 함수(Activation Function) 🌟 딥러닝의 세계에 오신 것을 환영합니다! 여기서 우리는 인공 신경망이 어떻게 데이터를 학습하고, 복잡한 문제를 해결하는지를 탐구할 것입니다. 이 과정에서 빼놓을 수 없는 핵심 요소가 바로 '활성화 함수(Activation Function)'입니다. 🚀 활성화 함수는 신경망이 비선형 문제를 해결할 수 있게 하는 마법 같은 도구입니다. 그럼, 이 마법의 도구에 대해 자세히 알아보도록 하겠습니다. 활성화 함수란 무엇인가? 활성화 함수의 역할 🎯 활성화 함수는 인공 신경망 내의 뉴런에서 입력 신호의 총합을 받아 이를 출력 신호로 변환하는 함수입니다. 이 과정에서 활성화 함수는 신경망에 비선형성을 추가하여, 모델이 복잡한 데이터 패턴을 학습할 수 있도록 돕습니다. 주요 활성화 함수들 🔍 시그모이드(Sigmoid):.. 2024. 2. 13.
[Machine Learning] 지니 불순도(Gini Impurity) 이해하기 😊🌳 데이터 과학과 머신 러닝의 세계에서, 의사결정트리(Decision Tree) 알고리즘은 그 효율성과 이해하기 쉬운 구조 때문에 널리 사용됩니다. 이 알고리즘의 핵심 요소 중 하나는 바로 '지니 불순도(Gini Impurity)'입니다. 🤔 지니 불순도는 데이터의 불순도 혹은 혼잡도를 측정하는 지표로, 의사결정트리가 데이터를 어떻게 분할할지 결정하는 데 중요한 역할을 합니다. 🌲✨ 지니 불순도의 정의와 계산 방법 📊 지니 불순도는 주어진 데이터 집합의 불확실성 또는 순도를 수치화한 것입니다. 간단히 말해, 한 데이터 집합에 다양한 클래스(또는 레이블)가 얼마나 섞여 있는지를 나타냅니다. 🧩 지니 불순도(G)의 계산 방법은 다음과 같습니다: 여기서 pi​는 특정 클래스에 속하는 항목의 비율을 나타냅니다. 📈.. 2024. 1. 30.
[Machine Learning] 정규화(Regularization): 회귀 분석에서 왜 필요한가? 여러분, 안녕하세요! 오늘은 회귀 분석에서 중요한 역할을 하는 '정규화(Regularization)'에 대해 알아보려고 합니다. 회귀 모델을 구축할 때, 과적합(Overfitting)이라는 문제에 직면하기 쉽습니다. 이를 해결하는 핵심 방법 중 하나가 바로 정규화인데요, 왜 이 방법이 중요한지 그 이유를 함께 살펴보겠습니다. 🧐 문제: 과적합(Overfitting) 설명: 회귀 분석에서 가장 큰 문제 중 하나는 과적합입니다. 모델이 훈련 데이터에 지나치게 적합되어 새로운 데이터에 대한 예측 성능이 떨어질 수 있습니다. 이는 모델이 데이터의 잡음까지 학습하게 되면서 발생합니다. 결과: 과적합된 모델은 실제 환경에서 적용했을 때 예측력이 낮아지며, 신뢰할 수 없는 결과를 초래할 수 있습니다. 해결책: 정규화.. 2024. 1. 24.
반응형