본문 바로가기
반응형

딥러닝19

[데이터사이언스 수학] 엔트로피(Entropy)란? 🤔 엔트로피(Entropy)란? 🤔안녕하세요! 오늘은 엔트로피(Entropy)에 대해 아주 쉽게 설명드리려고 해요. 🤗 엔트로피는 한 마디로 "무작위 변수의 예측 불가능성을 수치화한 것"이라고 할 수 있어요. 어렵게 들릴 수 있지만, 천천히 이해해볼게요! 🚀 1. 엔트로피가 뭐예요? 📊무작위 변수(Random Variable)란 우리가 어떤 결과를 예측하기 힘든 변수예요. 예를 들어:주사위를 굴렸을 때 나오는 숫자 🎲코인을 던졌을 때 앞면 또는 뒷면이 나올 확률 🪙엔트로피는 이 무작위 변수의 "얼마나 예측하기 힘든지"를 숫자로 표현한 거예요.값이 클수록 예측이 어려운 상황이고, 값이 작을수록 예측이 쉬운 상황이랍니다. 😎  엔트로피 값이 낮은 경우 (0에 가까움):데이터가 매우 규칙적일 때 발생.. 2025. 1. 9.
🛠️ AI 프로젝트: AI를 활용한 자동 회계 어시스턴트 🤖💼 이 프로젝트는 영수증이나 송장(invoices)에서 데이터를 자동으로 추출하고 정리하여 회계 작업을 간소화하는 시스템을 만드는 것입니다!✨ 이 시스템이 수행하는 주요 작업은 다음과 같아요:📜 1. 스캔된 영수증이나 송장에서 텍스트 추출📊 2. 추출된 데이터를 분석하고 필요한 정보(날짜, 금액, 공급업체 이름 등)를 구조화💾 3. 데이터를 엑셀 파일 또는 데이터베이스에 자동 저장 💻 기술 스택🟢 Python🟡 Tesseract OCR: 이미지에서 텍스트를 추출🔵 Hugging Face Transformers: 자연어 처리를 활용해 데이터 분석🟠 Pandas: 데이터 정리 및 엑셀 파일 저장🔴 Flask: 간단한 웹 인터페이스 제공 (옵션) 🎯 기능 ✅ PDF, JPG, PNG 형태의 영수.. 2025. 1. 1.
[Deep Learning] Self-Attention 메커니즘 이해하기 📘🤖 딥러닝의 발전으로 인해 자연어 처리(NLP)와 같은 분야에서 혁신적인 모델들이 등장하고 있습니다. 그 중에서도 트랜스포머(Transformer) 모델은 self-attention 메커니즘을 통해 놀라운 성능을 보여주고 있습니다. 이번 포스트에서는 self-attention의 기본 개념과 원리를 설명하고, 그 중요성을 살펴보겠습니다. 1. Self-Attention의 기본 개념 🧠Self-Attention은 입력 시퀀스의 각 요소가 다른 모든 요소와 상호작용하여 중요한 정보를 학습할 수 있게 하는 메커니즘입니다. 이는 각 단어(토큰)가 문맥(context)을 이해하고, 해당 문맥 내에서 자신이 얼마나 중요한지를 결정할 수 있게 합니다.입력 시퀀스: 예를 들어, 문장 "The cat sat on the m.. 2024. 6. 13.
[Deep Learning] LSTM (Long Short-Term Memory) 이해하기 📘🤖 RNN (Recurrent Neural Network)은 순차적 데이터를 처리하는 데 강력한 도구이지만, 긴 시퀀스를 처리할 때 기울기 소실(Vanishing Gradient) 문제에 취약합니다. 이를 해결하기 위해 LSTM (Long Short-Term Memory) 네트워크가 제안되었습니다. 이번 포스트에서는 LSTM의 기본 개념과 원리를 설명하고, 간단한 예제를 통해 LSTM이 어떻게 동작하는지 알아보겠습니다. 1. LSTM의 기본 개념 🧠LSTM은 RNN의 한 종류로, 긴 시퀀스에서도 효과적으로 학습할 수 있도록 설계되었습니다. LSTM은 셀 상태(cell state)와 게이트(gate) 메커니즘을 통해 중요한 정보를 오랜 기간 동안 유지할 수 있습니다.셀 상태 (Cell State): 셀 상태.. 2024. 6. 12.
반응형