반응형 머신러닝18 [데이터사이언스 수학] Eigenvalues와 Eigenvectors: 데이터사이언스에서 꼭 알아야 할 핵심 개념! 📊 Eigenvalues와 Eigenvectors, 도대체 왜 중요할까? 🤔Eigenvalues와 Eigenvectors는 선형대수학에서 굉장히 중요한 개념이에요. 하지만 왜 이 개념이 데이터사이언스에서 중요한지 궁금할 수 있죠? 😅 먼저, 간단히 말하면 Eigenvalue는 행렬이 벡터를 변형할 때 그 벡터의 크기만 변화시키는 "스케일" 요소이고, Eigenvector는 그 변형을 당하는 벡터에요. 다시 말해서, Eigenvector는 변형 후에도 방향은 그대로 유지하면서 크기만 커지거나 줄어들죠! 📏Eigenvector는 어떻게 정의될까? 🤓선형 변환을 할 때, Eigenvector는 특정 방향을 유지하면서 크기만 변경되는 벡터입니다. 예를 들어, 어떤 행렬이 특정 벡터를 변화시킬 때, 그 벡터는.. 2025. 1. 4. [데이터사이언스 수학] 📚 Matrix와 Tensor: 데이터 사이언스 필수 개념! 🚀 안녕하세요! 😄 오늘은 데이터 사이언스에서 자주 등장하는 두 가지 중요한 개념, Matrix(행렬)와 Tensor(텐서)에 대해 알아보도록 하겠습니다. 🧮 데이터의 구조를 이해하면 머신러닝과 딥러닝을 더 쉽게 배울 수 있어요! 🧠 1. Matrix(행렬)란? 🤔Matrix(행렬)는 2차원 배열로, 숫자가 행(row)과 열(column)로 배열된 구조를 가지고 있습니다. 📊 데이터를 시각화하거나 계산할 때 자주 사용됩니다.예시로는 이미지 데이터(픽셀 값 배열), 데이터셋(행: 데이터 샘플, 열: 피처)이 있습니다.📌 행렬의 특징2차원 구조: 행(row)과 열(column)로 구성행렬 연산: 덧셈, 곱셈, 전치(transpose) 등이 가능🖥️ Python으로 행렬 만들어보기# Import nu.. 2025. 1. 3. 🛠️ AI 프로젝트: AI를 활용한 자동 회계 어시스턴트 🤖💼 이 프로젝트는 영수증이나 송장(invoices)에서 데이터를 자동으로 추출하고 정리하여 회계 작업을 간소화하는 시스템을 만드는 것입니다!✨ 이 시스템이 수행하는 주요 작업은 다음과 같아요:📜 1. 스캔된 영수증이나 송장에서 텍스트 추출📊 2. 추출된 데이터를 분석하고 필요한 정보(날짜, 금액, 공급업체 이름 등)를 구조화💾 3. 데이터를 엑셀 파일 또는 데이터베이스에 자동 저장 💻 기술 스택🟢 Python🟡 Tesseract OCR: 이미지에서 텍스트를 추출🔵 Hugging Face Transformers: 자연어 처리를 활용해 데이터 분석🟠 Pandas: 데이터 정리 및 엑셀 파일 저장🔴 Flask: 간단한 웹 인터페이스 제공 (옵션) 🎯 기능 ✅ PDF, JPG, PNG 형태의 영수.. 2025. 1. 1. 머신러닝 알고리즘 가이드: 종류와 강점, 약점 분석 📊 머신러닝은 복잡한 데이터 패턴을 해석하고 예측 모델을 구축하는 데 강력한 도구입니다. 다양한 머신러닝 알고리즘은 서로 다른 유형의 데이터와 문제 상황에 맞게 설계되었습니다. 이러한 알고리즘은 고유한 작동 원리를 가지며, 각각의 장단점이 명확하게 구분됩니다. 본 글에서는 이러한 머신러닝 알고리즘들의 사용 사례, 기본 원리, 주요 강점 및 약점을 자세히 소개하고 비교함으로써, 독자들이 자신의 데이터 과학 프로젝트에 가장 적합한 알고리즘을 선택할 수 있도록 돕고자 합니다. 이를 통해, 복잡한 데이터 세트에서 의미 있는 인사이트를 추출하고 효과적인 결정을 내리는 데 필요한 기반을 마련할 수 있습니다. 선형 회귀 (Linear Regression) 📈사용 사례: 연속적인 값을 예측.작동 방식: 데이터에 가장 .. 2024. 12. 29. 이전 1 2 3 4 5 다음 반응형