반응형 행렬5 [데이터사이언스 수학] Eigenvalues와 Eigenvectors: 데이터사이언스에서 꼭 알아야 할 핵심 개념! 📊 Eigenvalues와 Eigenvectors, 도대체 왜 중요할까? 🤔Eigenvalues와 Eigenvectors는 선형대수학에서 굉장히 중요한 개념이에요. 하지만 왜 이 개념이 데이터사이언스에서 중요한지 궁금할 수 있죠? 😅 먼저, 간단히 말하면 Eigenvalue는 행렬이 벡터를 변형할 때 그 벡터의 크기만 변화시키는 "스케일" 요소이고, Eigenvector는 그 변형을 당하는 벡터에요. 다시 말해서, Eigenvector는 변형 후에도 방향은 그대로 유지하면서 크기만 커지거나 줄어들죠! 📏Eigenvector는 어떻게 정의될까? 🤓선형 변환을 할 때, Eigenvector는 특정 방향을 유지하면서 크기만 변경되는 벡터입니다. 예를 들어, 어떤 행렬이 특정 벡터를 변화시킬 때, 그 벡터는.. 2025. 1. 4. [데이터사이언스 수학] 📚 Determinant(행렬식): 행렬의 비밀을 푸는 열쇠! 🔑✨ 안녕하세요! 오늘은 데이터 사이언스와 선형 대수에서 중요한 개념인 Determinant(행렬식)에 대해 알아보겠습니다. 😄Determinant는 행렬의 특성을 나타내는 스칼라 값으로, 다양한 수학적, 물리적 의미를 담고 있습니다. 🧮 1. Determinant란? 🤔Determinant는 행렬이 공간에 미치는 길이(1차원), 면적(2차원), 부피(3차원)의 변화를 나타내는 값입니다.📌 주요 특징Determinant 값 > 0: 면적이나 부피가 양수 방향으로 변형됩니다.Determinant 값 : 면적이나 부피가 음수 방향(반전)으로 변형됩니다.Determinant 값 = 0: 행렬이 역행렬을 가지지 않으며, 공간을 "압축"하여 차원이 줄어듭니다.예시:Determinant가 2라면, 면적(2D) .. 2025. 1. 3. [자연어 처리 NLP] Bag-of-Words를 이용한 특징 추출 (Feature Extraction with Bag-of-Words) 많은 전통적인 머신러닝 기법들은 특징(feature)에 기반하여 작동하며, 이 특징은 보통 문서를 코퍼스와 관련 지어 설명하는 숫자들로 이루어져 있습니다. 이 중 Bag-of-Words는 가장 기본적이고 널리 사용되는 특징 추출 기법입니다. 😊 🛠️ Bag-of-Words (BoW)정의: Bag-of-Words는 텍스트 데이터를 각 문서의 단어들이 들어 있는 멀티셋으로 표현하는 방식입니다. 이 때 문법과 단어 순서는 무시하고 단어의 빈도만을 유지합니다.Bag-of-Words의 주요 개념단어 빈도 유지: Bag-of-Words에서는 각 문서에서 등장하는 단어의 빈도를 계산하여 해당 단어를 특징으로 사용합니다. 단어의 순서나 문법적인 구조는 고려되지 않기 때문에, 텍스트 데이터를 단순하고 효율적으로 수.. 2024. 11. 20. [데이터사이언스 수학] 데이터 사이언티스트가 알아야하는 Linear Algebra(선형대수) Part 3: 행렬 연산과 특성들 🧠🚀 마지막 파트에서는 행렬 연산과 그 특성들에 대해 알아볼 거예요! 이제 조금 더 깊게 들어가 볼게요! 😊2024.11.05 - [AI/Math 데이터사이언스 수학] - [데이터사이언스 수학] 데이터 사이언티스트가 알아야하는 Linear Algebra(선형대수) Part 1: 벡터와 벡터 연산! 🏹✨2024.11.05 - [AI/Math 데이터사이언스 수학] - [데이터사이언스 수학] 데이터 사이언티스트가 알아야하는 Linear Algebra(선형대수) Part 2: 벡터 공간과 행렬! 🧩 1. 행렬 곱셈(Matrix Multiplication) ✖️행렬은 다른 행렬과 곱셈을 할 수 있어요. 이를 통해 데이터를 변환하거나 새로운 정보를 얻을 수 있어요.예: [3x2] 행렬과 [2x3] 행렬을 곱하면.. 2024. 11. 6. 이전 1 2 다음 반응형