본문 바로가기
반응형

AI 공부/AI 에이전트 (AI Agents)17

🏗️ MCP 아키텍처 완전 정리 — Host, Client, Server— 컨텍스트가 오가는 구조를 이해하면, MCP가 보인다! 🧱 1. MCP의 전체 구조 요약MCP는 AI 모델에게 필요한 컨텍스트(문맥)를 가져오기 위해 만들어진 표준 프로토콜입니다.MCP는 크게 세 가지 역할로 구성됩니다:구성요소설명예시🧠 Host전체 프로세스를 관리하고 연결을 조율하는 컨테이너Claude Desktop, Cursor🤝 ClientMCP 서버에 연결하여 데이터를 요청하거나 명령을 내리는 역할Claude Agent, Cursor 내부 MCP 모듈🛠 Server툴/리소스/프롬프트를 제공하는 외부 시스템DB MCP 서버, Git MCP 서버, 로그 MCP 서버 등 🧭 2. Host의 역할Host는 MCP 아키텍처의 중앙 통제실이라고 할 수 있습니다. 모든 Client는 Host 안에서 실행됩니다.🔧 Host가 하는 일클라이언트(Client.. 2025. 4. 1.
🧠 MCP의 핵심 철학: Context의 힘 1. Generative AI의 진짜 실력은 '문맥'에서 나온다많은 분들이 "GPT가 똑똑하다", "Claude가 유능하다"는 말을 합니다. 그런데 이 모델들이 진짜로 유용해지는 이유는 단순히 모델이 크거나 똑똑해서가 아닙니다. ✔️ 얼마나 정확한 문맥(Context)을 주느냐에 따라,✔️ 얼마나 관련성 있는 결과를 만들어내느냐가 결정됩니다.2. 컨텍스트란 정확히 무엇인가요?🧩 컨텍스트 = AI 모델이 현재 상황을 이해하고, 적절한 반응을 하기 위해 필요한 정보예시로 살펴보죠:텍스트 모델 (예: GPT, Claude)→ 대화 내용, 질문, 시스템 프롬프트 등코드 생성 모델 (예: Copilot, Codium)→ 이전 코드, 함수 이름, 주석, 사용 중인 라이브러리 등이미지 생성 모델 (예: DALL·E.. 2025. 3. 31.
MCP란 무엇인가? — AI의 새로운 문법 MCP란 무엇인가? — AI의 새로운 문법🧠 AI 초보~중급 개발자를 위한 MCP 입문 가이드1. MCP의 등장 배경 🧩 Generative AI 시대가 본격화되면서, 다양한 앱과 도구들이 언어모델(LLM)의 힘을 빌려 동작하고 있습니다. 그런데 문제는, 이 모델들이 제대로 기능하려면 ‘문맥(Context)’이라는 게 꼭 필요하다는 것입니다. 하지만 지금까지는 각 회사, 각 프로젝트가 제각각 방식으로 문맥을 전달해왔습니다. 누군가는 자체 API를 만들고, 누군가는 데이터베이스를 직접 붙였습니다. 이로 인해 생긴 문제가 바로…2. 왜 MCP가 필요한가? — N × M 문제 ❌ 다음 상황을 생각해보세요:🧑‍💻 AI 앱이 10개🔌 데이터 소스나 툴이 10개모든 앱이 모든 도구와 연결되려면, 10 × .. 2025. 3. 30.
💡Agentic AI 시대의 데이터 엔지니어링 혁신 기업 데이터 관리를 재정의하는 AI 에이전트의 등장최근 AI 분야에서는 단순한 생성형 AI(Generative AI)를 넘어서 Agentic AI라는 새로운 패러다임이 주목받고 있습니다. ChatGPT처럼 텍스트를 생성하는 도우미 역할을 넘어, AI 에이전트는 이제 스스로 복잡한 작업을 수행할 수 있는 능력을 갖추기 시작했습니다. 예를 들어 여행을 계획하고, 항공편을 예약하며, 심지어 집 수리를 위한 견적을 비교해 계약까지 할 수 있는 자율적 시스템이 등장한 것이죠. 이러한 변화는 기업의 핵심 업무 중 하나인 데이터 관리(Data Management)에도 커다란 영향을 미치고 있습니다. 이번 글에서는 Debmalya Biswas의 글을 기반으로, Agentic AI가 어떻게 기업의 데이터 카탈로깅(Dat.. 2025. 3. 29.
반응형