반응형 데이터사이언스(Data Science)74 머신러닝 알고리즘 가이드: 종류와 강점, 약점 분석 📊 머신러닝은 복잡한 데이터 패턴을 해석하고 예측 모델을 구축하는 데 강력한 도구입니다. 다양한 머신러닝 알고리즘은 서로 다른 유형의 데이터와 문제 상황에 맞게 설계되었습니다. 이러한 알고리즘은 고유한 작동 원리를 가지며, 각각의 장단점이 명확하게 구분됩니다. 본 글에서는 이러한 머신러닝 알고리즘들의 사용 사례, 기본 원리, 주요 강점 및 약점을 자세히 소개하고 비교함으로써, 독자들이 자신의 데이터 과학 프로젝트에 가장 적합한 알고리즘을 선택할 수 있도록 돕고자 합니다. 이를 통해, 복잡한 데이터 세트에서 의미 있는 인사이트를 추출하고 효과적인 결정을 내리는 데 필요한 기반을 마련할 수 있습니다. 선형 회귀 (Linear Regression) 📈사용 사례: 연속적인 값을 예측.작동 방식: 데이터에 가장 .. 2024. 12. 29. [머신러닝] 머신러닝 성능 200% 올리는 비법! 🤖✨ 피처 엔지니어링 꿀팁 공개! 기계학습(Machine Learning)에서 예측력을 높이기 위한 핵심 방법 중 하나는 바로 올바른 피처(Feature)를 선택하고 불필요한 피처를 제거하는 것입니다. 🔍 데이터 과학자나 머신러닝 엔지니어는 이 과정에서 모델의 성능을 크게 향상시킬 수 있습니다. 오늘은 다양한 피처 엔지니어링 기법을 살펴보며, 각각의 기법이 모델 성능에 어떤 영향을 미치는지 알아보겠습니다! 😊 🌟 1. 결측값 처리 (Imputation)현실 세계의 데이터는 결측값(Missing Value)으로 가득할 때가 많습니다. 😅 결측값을 제대로 처리하지 않으면 모델 성능이 저하될 가능성이 높습니다.대표적인 결측값 처리 방법:평균값으로 채우기중간값(Median) 또는 최빈값(Mode)으로 채우기예를 들어, 대출 상환 여부를 .. 2024. 12. 8. [자연어 처리 NLP] 단어 임베딩과 문맥적 임베딩: NLP의 핵심 이해하기 🌟 자연어 처리(NLP)에서 단어의 의미와 관계를 어떻게 표현할 수 있을까요? 🤔 단어 임베딩은 이 문제를 해결하기 위한 중요한 도구로 자리 잡았습니다. 이 글에서는 전통적인 단어 임베딩과 문맥적 단어 임베딩의 차이점을 설명하고, 각각의 예제를 통해 그 개념을 쉽게 이해해보겠습니다. 📚 단어 임베딩 (Word Embeddings) ✨단어 임베딩은 단어들의 의미, 문법적 속성, 그리고 다른 단어들과의 관계를 밀집된 벡터로 표현하는 방법입니다. 전통적인 방법인 Bag of Words나 TF-IDF는 단어를 개별적인 엔티티로 다루지만, 단어 임베딩은 단어를 연속된 벡터 공간에 매핑하여 의미적으로 유사한 단어들이 가까운 위치에 있도록 합니다. 🔍 이 방식 덕분에 단어의 의미를 더 잘 표현할 수 있게 되었고,.. 2024. 11. 21. [자연어 처리 NLP] 🌟 TF-IDF를 이용한 특징 추출 (Term Frequency-Inverse Document Frequency) 🛠️ 1. 단어 빈도 (Term Frequency, TF)단어 빈도(TF)는 특정 단어가 문서에서 얼마나 자주 등장하는지를 측정합니다. 일반적으로 문서 내 총 단어 수로 정규화하여 더 긴 문서로 인한 편향을 방지합니다. 예를 들어, "강아지가 마당에서 놀고 있다"라는 문서에서 "강아지"라는 단어의 빈도는 해당 단어가 몇 번 등장했는지를 나타냅니다. 😊 🛠️ 2. 역문서 빈도 (Inverse Document Frequency, IDF)역문서 빈도(IDF)는 특정 단어가 전체 코퍼스 내에서 얼마나 중요한지를 측정합니다. 많은 문서에 등장하는 단어일수록 중요도가 낮아지며, 일부 문서에만 등장하는 단어일수록 중요도가 높아집니다. 분모에 +1을 추가하여 특정 단어가 어떤 문서에도 등장하지 않는 경우에 0으로.. 2024. 11. 21. 이전 1 2 3 4 5 6 7 ··· 19 다음 반응형