본문 바로가기
반응형

Ai17

[Deep Learning] 딥러닝 다중 라벨 분류의 손실 함수: Binary Cross-Entropy 머신러닝에서는 다양한 분류 문제가 있습니다. 그 중 하나는 **다중 라벨 분류(Multi-Label Classification)**입니다. 다중 라벨 분류는 하나의 데이터 포인트가 여러 개의 라벨에 속할 수 있는 문제를 말합니다. 예를 들어, 하나의 사진이 '고양이', '실내', '밤' 등 여러 라벨을 가질 수 있습니다. 이런 문제를 해결하기 위해서는 적절한 손실 함수가 필요합니다. 이번 글에서는 다중 라벨 분류에서 자주 사용되는 Binary Cross-Entropy (BCE) 손실 함수에 대해 알아보겠습니다.   Binary Cross-Entropy 손실 함수는 다중 라벨 분류에서 각 라벨을 독립적으로 처리하여 손실을 계산합니다. 각 라벨에 대해 0 또는 1을 예측하며, 각 라벨의 예측 확률과 실제 라.. 2024. 5. 31.
[Transformer] 트랜스포머 포지셔널 인코딩 (Positional Encoding) 쉽게 설명하기 📏 안녕하세요! 오늘은 Transformer 모델에서 사용하는 포지셔널 인코딩에 대해 쉽게 설명해드리겠습니다. 포지셔널 인코딩은 Transformer 모델이 입력된 단어들의 순서를 이해할 수 있도록 도와주는 중요한 개념입니다.포지셔널 인코딩이 필요한 이유 🤔기존의 순환 신경망(RNN)이나 LSTM 모델은 단어의 순서를 자연스럽게 이해할 수 있습니다. 왜냐하면 이 모델들은 단어들을 순차적으로 처리하기 때문입니다. 하지만 Transformer 모델은 병렬 처리가 가능하도록 설계되어 있어서 단어의 순서 정보를 따로 제공해줘야 합니다. 그렇지 않으면 단어들의 순서를 알 수 없게 됩니다.포지셔널 인코딩이란? 📐포지셔널 인코딩은 각 단어 벡터에 위치 정보를 더해주는 방식입니다. 이 정보를 통해 모델은 각 단어가 문.. 2024. 5. 30.
[Deep Learning] 단어 임베딩 Word Embeddings: 자연어 처리의 핵심 기술과 예제 현대 자연어 처리(NLP) 기술에서 단어를 컴퓨터가 이해할 수 있는 형태로 표현하는 것은 매우 중요합니다. 단어 표현(Word Representation)과 단어 임베딩(Word Embeddings)은 이러한 문제를 해결하는 핵심 기술입니다. 이 글에서는 단어 표현과 단어 임베딩의 개념, 그 필요성, 그리고 다양한 방법론에 대해 쉽게 설명하고, 예제와 코딩 예제를 포함하여 소개하겠습니다.  단어 표현(Word Representation)단어 표현은 단어를 숫자나 벡터와 같은 기계가 이해할 수 있는 형태로 변환하는 과정입니다. 초기에는 단순한 단어 빈도(count-based) 방법이 사용되었으나, 이는 단어 간의 문맥적 의미를 잘 반영하지 못했습니다. 😔예제 📚단어 빈도: "apple"이 3번 등장, .. 2024. 5. 28.
[Machine Learning] N-gram이란 무엇인가? 텍스트 분석의 핵심 이해하기 언어는 인간 커뮤니케이션의 기본 요소입니다. 디지털 시대에 접어들며, 우리는 매일 방대한 양의 텍스트 데이터와 상호작용하게 되었고, 이로 인해 텍스트 분석의 중요성이 급격히 증가했습니다. 그 중심에는 'N-gram'이라는 개념이 자리잡고 있습니다. 📖🔍 이 블로그 포스팅에서는 N-gram의 개념을 소개하고, 그것이 언어 처리와 텍스트 분석에 어떻게 활용되는지 탐구해보겠습니다. N-gram N-gram은 텍스트나 연설에서 N개의 연속적인 항목(문자, 음절, 단어 등)의 시퀀스를 말합니다. 'N'은 숫자를 나타내며, 이는 시퀀스에 포함된 항목의 수를 의미합니다. 예를 들어, "I love language processing" 이라는 문장에서 2-gram(또는 bigram)은 "I love", "love la.. 2024. 3. 13.
반응형