본문 바로가기
반응형

AI78

[Deep Learning] 트리거 워드 감지 알고리즘: 시리, 알렉사와 같은 가상 비서의 핵심 기술 트리거 워드 감지 알고리즘은 텍스트 데이터에서 특정 단어나 구를 찾아내는 기술입니다. 이 알고리즘은 다양한 분야에서 사용될 수 있으며, 예를 들어, 고객 서비스에서 중요한 키워드를 감지하여 빠르게 대응하거나, 소셜 미디어에서 부정적인 댓글을 자동으로 필터링하는 데 활용됩니다. 이 글에서는 트리거 워드 감지 알고리즘의 원리와 이를 구현하는 방법을 쉽게 설명하겠습니다.  Trigger Word Algorithm?트리거 워드 감지 알고리즘의 기본 원리 트리거 워드 감지 알고리즘은 특정 단어 또는 구를 텍스트에서 검색하고 식별하는 과정을 포함합니다. 이는 주로 문자열 검색 알고리즘을 사용하여 구현되며, 정규 표현식이나 패턴 매칭 기술이 자주 사용됩니다.트리거 워드 리스트 구성 먼저 감지하고자 하는 트리거 워드 .. 2024. 5. 27.
[Machine Learning] N-gram이란 무엇인가? 텍스트 분석의 핵심 이해하기 언어는 인간 커뮤니케이션의 기본 요소입니다. 디지털 시대에 접어들며, 우리는 매일 방대한 양의 텍스트 데이터와 상호작용하게 되었고, 이로 인해 텍스트 분석의 중요성이 급격히 증가했습니다. 그 중심에는 'N-gram'이라는 개념이 자리잡고 있습니다. 📖🔍 이 블로그 포스팅에서는 N-gram의 개념을 소개하고, 그것이 언어 처리와 텍스트 분석에 어떻게 활용되는지 탐구해보겠습니다. N-gram N-gram은 텍스트나 연설에서 N개의 연속적인 항목(문자, 음절, 단어 등)의 시퀀스를 말합니다. 'N'은 숫자를 나타내며, 이는 시퀀스에 포함된 항목의 수를 의미합니다. 예를 들어, "I love language processing" 이라는 문장에서 2-gram(또는 bigram)은 "I love", "love la.. 2024. 3. 13.
[LLM] 정보 검색(Information Retrieval): 디지털 세계의 나침반 🧭 우리는 정보의 바다에서 항해하는 항해자들입니다. 🚢 인터넷이라는 거대한 바다에서 우리가 원하는 정보를 찾는 것은 종종 어려울 수 있습니다. 바로 여기서 정보 검색(Information Retrieval, IR) 기술이 등장합니다! IR은 대량의 데이터 속에서 사용자의 정보 요구에 부합하는 정보를 찾아내는 컴퓨터 시스템의 과정을 말합니다. 검색 엔진, 온라인 도서관, 데이터베이스 시스템 등 우리 생활 곳곳에서 이 기술이 활용되고 있죠. 🌐 IR의 핵심 개념들 🗝️ 문서(Document): 텍스트, 이미지, 음성 등 다양한 형태의 데이터. 정보 검색 시스템이 다루는 기본 단위입니다. 쿼리(Query): 사용자가 정보를 찾기 위해 입력하는 요구 사항. 예를 들어, 검색 엔진에 입력하는 검색어가 쿼리가 됩니다... 2024. 3. 8.
[LLM] 🌟 Few-Shot Learning, Zero-Shot Learning, Decomposition, Ensembling: 차이점 비교 안녕하세요, AI 마법사들! 오늘은 마법 같은 인공지능 모델의 학습 방법에 대해 이야기해보려고 합니다. 🧙‍♂️💫 여러분, Few-Shot Learning, Zero-Shot Learning, Decomposition, Ensembling에 대해 들어보셨나요? 각각의 방법은 AI가 새로운 작업을 마스터하는 데 도움을 주는데요, 그 차이점을 한번 살펴볼까요? 🤔 1️⃣ Few-Shot Learning (퓨샷 학습) 👶 퓨샷 학습은 마치 요리를 할 때 레시피를 몇 번 보고 바로 요리를 시작하는 것과 같아요. 🍳 소량의 데이터만으로도 새로운 작업을 수행할 수 있게 합니다. 이 방법은 미세 조정을 통해 빠르게 적응하죠. 하지만, 마법 재료(데이터)가 많이 필요해요! 2️⃣ Zero-Shot Learning (제.. 2024. 3. 7.
반응형